Hepatitis B core-related antigen quantification is an accurate predictor 12-months prior to hepatitis B "e" antigen-seroclearance in HIV-HBV coinfected patients treated with tenofovir

¹ INSERM, Sorbonne Université, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; ³Service de maladies infectieuses, Hôpital Saint-Antoine, Paris, France; ⁴Service de maladies infectieuses, Hôpital de la Croix-Rousse, Hospices Civils, Lyon, France; ⁶Service de maladies infectieuses, Hôpital Tenon, AP-HP, Paris, France; ⁶Service de maladies infectieuses, Hôpital Tenon, AP-HP, Paris, France:

Introduction

For hepatitis B "e" antigen (HBeAg)-positive patients, HBeAg seroconversion is an important endpoint indicating long-lasting therapeutic response and clinical improvement.¹

Despite prolonged periods of undetectable serum HBV-DNA, tenofovir (TDF)-treated patients co-infected with HIV-hepatitis B virus (HBV) do not immediately clear HBeAg, thereby highlighting the need for new markers of treatment efficacy.²

In the past years, new markers, such as quantitative hepatitis B core-related antigen (HBcrAg), have been gaining attention in

Objectives

To describe the kinetics of HBcrAg and determine its accuracy as a predictor of HBeAg-seroclearance during the course of TDF-containing ART in HBeAg-positive HIV-HBV co-infected patients.

Methods and Patients

Study Design and population

This analysis is part of the French HIV-HBV cohort (2002-2011), a prospective, observational, multi-center study comprising 308 participants in 7 clinical centers in France.

Quantification of HBV-parameters

All HBV-parameters were obtained at baseline and every 6-12 months.

- HBV-DNA detection: PCR-Amplicor (Roche Diagnostic Systems, Meylan, France; detection limit 60 IU/mL).
- HBcrAg level: HBcrAg assay (Lumipulse system, FujiRebio, Inc.) with automated CLEIA system; reported in U/mL.
- HBeAg quantification: Architect i2000 analyzer assay (Abbott Laboratories, Rungis, France) and reported in Paul Erlich Institute units (PEI U)/mL.

Statistical analysis

- ✓ Linear regression was used to determine baseline determinants of HBcrAg level.
- ✓ Mixed-effect linear models was performed to estimate the change of HBcrAg levels over time. Values were adjusted a *priori* on baseline levels, body mass index, age, concomitant lamivudine (LAM) treatment, cumulative treatment duration with LAM, HBV-DNA level, and CD4+ cells/mm³.

Lorenza Dezanet¹, Audrey Gabassi², Sarah Maylin², Hayette Rougier³, Patrick Miailhes⁴, Caroline Lascoux-Combe⁵, Julie Chas⁶, Pierre-Marie Girard³, Constance Delaugerre², Karine Lacombe^{1,3}, Anders Boyd^{1,3}

- patients chronically mono-infected with HBV. HBcrAg consists of three species of related proteins sharing an identical 149 amino acid sequence: HBcAg, HBeAg and p22cr.³
- This surrogate marker strongly correlates with covalentlyclosed circular (ccc)DNA (correlation coefficient = 0.70) and serum HBV DNA, even when HBV DNA is undetectable in HBV mono-infected patients.^{3,4}
- Nevertheless, no previous study to date has examined its relevance during tenofovir (TDF) treatment in HIV-HBV coinfected patients.

Inclusion criteria:

- HBsAg seropositivity >6mo
- HIV ELISA (+) confirmed by WB
- age over 18 years old
- minimum of 2 follow-up visits (>6 months)
- available sample at baseline and at least once during follow-up
- initiated TDF-containing antiretroviral treatment (ART)
- HBeAg-positive at baseline

Exclusion criteria:

- baseline or incident infection with HCV or HDV
- undergoing intensification with peg-IFN / IFN

95 participants included in this analysis

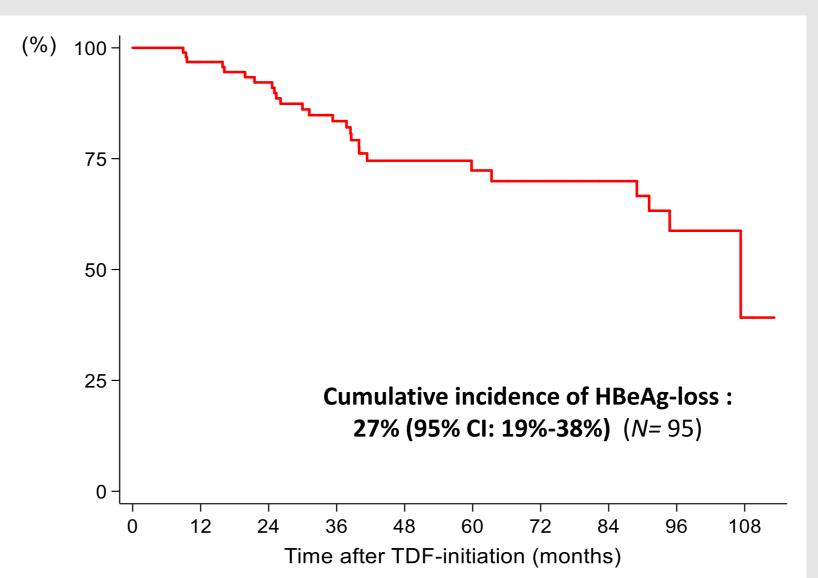
Cox proportional hazards regression was used to assess the association between HBcrAg level and HBeAg-loss.

✓ Time-dependent ROC curves was carried out to evaluate prediction of HBeAg-loss using HBV-infection markers with sensitivity (Se) and specificity (Sp) at every yearly interval. ✓ Statistical significance was determined at a p-value <0.05</p>

References

¹Lampertico, P. et al. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol. 67, 370–398 (2017). ² Piroth, L. et al. Management and treatment of chronic hepatitis B virus infection in HIV positive and negative patients: the EPIB 2008 study. J Hepatol., 53, 1006-1012 (2010). ³ Mak, L.-Y., et al. Review article: hepatitis B core-related antigen (HBcrAg): an emerging marker for chronic hepatitis B virus infection. Aliment Pharmacol Ther 47, 43–54 (2018). ⁴ Wong, D. K.-H. et al. Hepatitis B virus core-related antigens as markers for monitoring chronic hepatitis B infection. J Clin Microbiol 45, 3942–3947 (2007).

Results


Baseline characteristics of patients treated with tenofovir

	HBeAg-positive (N=95)
Male gender *	89 (94)
Age (years) **	40 (35-47)
From zone of HBV-high prevalence *	8 (8)
AIDS-defining illness *	29 (31)
CD4 ⁺ cell count (cells/mm ³) **	423 (312-580)
Nadir CD4+ cell count (cells/mm ³) **	230 (78-321)
HIV-RNA > 50 copies/mL*	45 (48)
Duration of prior ARV therapy (years) **	7 (5-9)
HBV-infection duration (years) **	8 (4-12)
Concomitantly treated with LAM *	67 (71)
HBV-DNA (log ₁₀ IU/mL) **	6.6 (4.2-7.6)
ALT (IU/mL) **	63 (39-97)
HBeAg level (PEI U/mL) **	862 (328-1099)
HBcrAg level (log ₁₀ U/mL) **	7.8 (7.0-8.2)

	Diff.	(95% CI)	р
From zone of HBV-high prevalence	-0.754	(-1.478, -0.031)	0.04
Duration of prior ARV therapy (yrs)	-0.086	(-0.146, -0.027)	0.004
$ALT \leq 70 IU/mL$	-0.564	(-0.994, -0.135)	0.009
AST <u><</u> 70 IU/mL	-0.571	(-1.032, -0.110)	0.02
HBeAg level (PEI U/mL)	0.469	(0.211, 0.727)	<0.001

*Number (%); **median (25-75th percentile); HIV- and HBV-infection duration were estimated from first positive serology.

Cumulative probability of HBeAg-loss

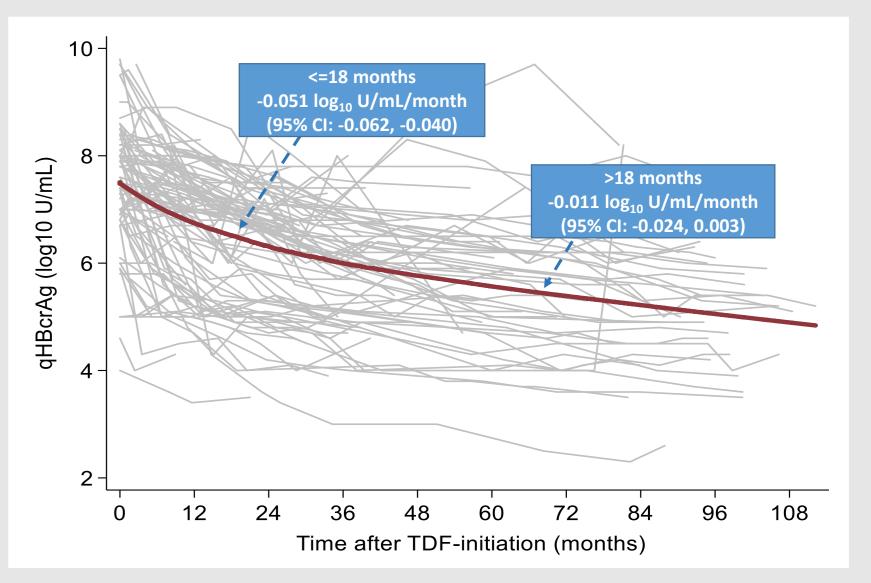
Association between HBcrAg levels and HBeAg-loss

Baseline HBcrAg level <6.5 log₁₀ U/mL was a predictor of HBeAg-loss during follow-up (HR = 5.46; 95% CI: 2.43–12.27; p <0.001), after adjustment for CD4+ cell count per 250/mm³ change from prior visit (HR = 0.98; 95% CI: 0.96-1.00; p = 0.09).

HBcrAg level and prediction of HBeAg loss

		Classification Probabilities								
		M	24	N	136	N	148	N	172	
		n=78		n=63		n=40		n=27		
Criteria	Ν	Se	Sp	Se	Sp	Se	Sp	Se	Sp	S
HBcrAg level <6.5 log ₁₀ U/mL										
M12	95	0.82	0.67	0.77	0.68	0.71	0.70	0.70	0.76	0.6
M24	84	++	++	1	0.58	0.97	0.61	0.96	0.69	0.8
M36	76	++	++	++	++	1	0.42	1	0.48	0.8
HBV-DNA <60 IU/mL										
M12	95	0.92	0.60	0.76	0.61	0.77	0.64	0.63	0.66	0.5
M24	84	++	++	1	0.33	1	0.35	1	0.40	0.9
M36	76	++	++	++	++	1	0.17	1	0.20	0.9

Acknowledgements


Contact: and ers.boyd@iplesp.upmc.fr

📲 Inserm

Baseline determinants of HBcrAg (log₁₀ U/mL)

qHBcrAg during long-term TDF-treatment

HBeAg-loss occurred in 26 patients within a median 32 months (IQR=21-40). Median follow-up time was 4.6 years (IQR: 2.9 – 7.6).

		Conclusions
		• HBcrAg levels 12-months prior to loss
M96		appears to have high sensitivity in predicting HBeAg-seroclearance.
n=13	3	
Se S	Sp	Although specificity in predicting long-
	-	term HBeAg-seroclearance was low, it
).60 0).87	remained mostly higher than HBV-DNA
0 08.).82	detection.
).85 0).58	 CD4 level does not influence the
		decrease of HBcrAg levels.
).53 0).72	• HBV-DNA only provides optimal
0.92 0).52	
0.91 0).22	sensitivity for long-term prediction.

This study was funded in part by SIDACTION with additional funding from the ANRS (France REcherche Nord&Sud Sida-hiv Hépatites). The French HIV–HBV Cohort is sponsored by IMEA (Institut de Médecine et d'Epidémiologie Appliquée), Paris, France. Leading author (L.D.) received research grant as post-doctoral fellow from the ANRS.

Octer Session01